Microstructure and Texture in Steels and Other Materials

Mục Lục

1 Transformation Textures Associated with Steel Processing …………… 3
John J. Jonas
1.1 Introduction ……………………………………………………………………….. 3
1.2 Hot Band Textures………………………………………………………………. 6
1.2.1 General Features …………………………………………………….. 6
1.2.2 Effects of Austenite Rolling and Recrystallization
on the Texture ………………………………………………………… 8
1.3 The Bain, Kurdjumov-Sachs, and Nishiyama-Wassermann
Correspondence Relationships ……………………………………………… 8
1.4 Transformation Behavior of Recrystallized Austenite ……………… 10
1.5 Transformation Behavior of Deformed Austenite ……………………. 11
1.6 Variant Selection ………………………………………………………………… 12
1.7 Overall Summary of the Rolling
and Transformation Behavior……………………………………………….. 14
References……………………………………………………………………………………. 16
2 Mathematics of Crystallographic Texture in Martensitic
and Related Transformations………………………………………………………. 19
H.K.D.H. Bhadeshia, S. Kundu, and H. Abreu
2.1 Introduction ……………………………………………………………………….. 19
2.2 Crystallographic Theory of Martensite…………………………………… 20
2.2.1 Structure of the Interface………………………………………….. 20
2.2.2 The Shape Deformation …………………………………………… 20
2.2.3 The Bain Strain ………………………………………………………. 21
2.2.4 Phenomenological Solution ……………………………………… 23
2.2.5 The Crystallographic Set………………………………………….. 25

x Contents
2.3 Variant Selection ………………………………………………………………… 26
2.4 Transformation Plasticity …………………………………………………….. 28
2.5 The Intensity of the Texture …………………………………………………. 29
2.6 Summary …………………………………………………………………………… 30
References……………………………………………………………………………………. 30
3 Structure and Strength of IF Steel
After Large Strain Deformation…………………………………………………… 33
Niels Hansen, Xiaoxu Huang, and Naoya Kamikawa
3.1 Introduction ……………………………………………………………………….. 33
3.2 Universal Pattern of Structural Evolution……………………………….. 34
3.2.1 Cold Rolling…………………………………………………………… 34
3.2.2 Accumulative Roll-Bonding (ARB)…………………………… 37
3.2.3 Rolling of Lath Martensite……………………………………….. 38
3.2.4 Summary: Structural Observations ……………………………. 38
3.3 Microstructural Parameters and Flow Stress …………………………… 39
3.3.1 Summary: Structure-Property Relationships……………….. 41
3.4 Concluding Remarks …………………………………………………………… 41
References……………………………………………………………………………………. 42
4 The Coming of Grain Boundary Engineering in the 21st Century …. 43
Tadao Watanabe, Sadahiro Tsurekawa, Xiang Zhao, and Liang Zuo
4.1 Introduction ……………………………………………………………………….. 44
4.1.1 Material-Assisted Civilization and Development ………… 44
4.1.2 Requirements for High Performance Materials……………. 44
4.1.3 Importance of Grain Boundaries
in Engineering Materials………………………………………….. 46
4.2 Grain Boundary Microstructures in Polycrystalline Materials …… 46
4.2.1 Versatility of Grain Boundary Microstructure …………….. 46
4.2.2 Structure-Dependent Boundary Properties………………….. 48
4.2.3 Structure-Dependent Grain Boundary Fracture …………… 49
4.2.4 Observations of Grain Boundary-Related Fracture
of Polycrystalline Materials ……………………………………… 50

4.3 Grain Boundary Engineering (GBE)
for High Performance Materials ……………………………………………. 52
4.3.1 Basic Concept of Grain Boundary Engineering…………… 52
4.3.2 Possible Processing Methods
for Grain Boundary Engineering……………………………….. 53

4.4 The Characterization of Grain Boundary Microstructures
by OIM ……………………………………………………………………………… 54
4.4.1 Quantitative Analysis of Grain Boundary
Microstructures ………………………………………………………. 54
4.4.2 Grain Boundary Character Distribution (GBCD) ………… 56
4.4.3 Grain Boundary Connectivity …………………………………… 57

Contents xi
4.5 Metallurgical Factors Affecting GBCD………………………………….. 57
4.5.1 Relation Between GBCD and Grain Size …………………… 57
4.5.2 Relation Between GBCD and Texture……………………….. 59
4.5.3 Relation Between GBCD and Material
Purity/Composition …………………………………………………. 61
4.6 Prediction of GBCD-Controlled Brittle-Ductile Transition
and Fracture Toughness……………………………………………………….. 62
4.7 The Control of Intergranular Brittleness
by Grain Boundary Engineering……………………………………………. 64
4.7.1 The Control of Intrinsic Intergranular Brittleness………… 64
4.7.2 The Control of Oxidation-Induced
Intergranular Brittleness…………………………………………… 67
4.8 Grain Boundary Engineering by Magnetic Field Application……. 70
4.8.1 The Control of Segregation-Induced Brittleness………….. 70
4.8.2 The Control of Abnormal Grain Growth
and Heterogeneous Microstructure ……………………………. 72
4.8.3 Microstructure Control by Magnetic Phase
Transformation……………………………………………………….. 74
4.9 Grain Boundary Engineering for Photovoltaic Polysilicon ……….. 75
4.10 Summary and Prospect ………………………………………………………… 77
References……………………………………………………………………………………. 79

Part II Control of Texture and Microstructure in Steels
5 Texture Development in Low Carbon Sheet Steels
for Automotive Application …………………………………………………………. 85
Jun-Yun Kang, Dong-Ik Kim, and Hu-Chul Lee
5.1 Introduction ……………………………………………………………………….. 86
5.2 Texture Development in Low Carbon Sheet Steels………………….. 87
5.2.1 Development of Cold Rolled Microstructure
and Texture ……………………………………………………………. 88
5.2.2 Development of Recrystallization Texture …………………. 90
5.2.3 Mechanism of the Recrystallization
Texture Formation…………………………………………………… 93
5.3 Effect of Austenite Transformation on the Recrystalization
Texture of DP Steel …………………………………………………………….. 98
5.4 Summary …………………………………………………………………………… 99
References……………………………………………………………………………………. 100
6 Texture and Microstructure Evolution at the Metal-Vapour
Interface During Transformation Annealing in a Mn and Al
Alloyed Ultra Low Carbon Steel ………………………………………………….. 103
Leo A.I. Kestens, Jai Gautam, and Roumen Petrov
6.1 Introduction ……………………………………………………………………….. 103

xii Contents
6.2 Experimental Procedure ………………………………………………………. 104
6.3 Results ………………………………………………………………………………. 105
6.3.1 Surface Texture and Through Thickness
Microstructure Before Annealing ……………………………… 105
6.3.2 Surface Texture at Different Temperatures
During Interrupted Annealing…………………………………… 106
6.3.3 Through Thickness Grain Morphology………………………. 107
6.4 Discussion …………………………………………………………………………. 107
6.5 Conclusions ……………………………………………………………………….. 108
References……………………………………………………………………………………. 109
7 Precipitation Behavior and Textural Evolution
in Interstitial Free High Strength (IFHS) Steels ……………………………. 111
R.K. Ray and P. Ghosh
7.1 Introduction ……………………………………………………………………….. 111
7.2 Precipitation in Batch Annealed (BA) IFHS Steels………………….. 112
7.3 Precipitation in Continuous Annealed (CA) IFHS Steels………….. 115
7.4 Precipitation of FeTiP………………………………………………………….. 117
7.4.1 Structure and Constitution of FeTiP ………………………….. 118
7.4.2 FeTiP Formation in Cold Rolled and Annealed Steels …. 119
7.4.3 Prevention of FeTiP Formation in BA-IFHS Steels……… 122
7.5 Conclusions ……………………………………………………………………….. 123
References……………………………………………………………………………………. 123
8 Texture, Microstructure and Properties of Coatings
on a few Industrially Produced Galvanized
and Galvannealed Interstitial Free Steels……………………………………… 125
D. Bhattacharjee, A. Chakraborty, R. Pais, and R.K. Ray
8.1 Introduction ……………………………………………………………………….. 125
8.2 Experimental Procedure ………………………………………………………. 127
8.3 Experimental Results…………………………………………………………… 129
8.4 Discussion …………………………………………………………………………. 140
8.5 Conclusions ……………………………………………………………………….. 142
References……………………………………………………………………………………. 143
9 Effects of Microalloying in Multi Phase Steels
for Car Body Manufacture ………………………………………………………….. 145
Wolfgang Bleck and Kriangyut Phiu-on
9.1 Introduction ……………………………………………………………………….. 145
9.2 Definition…………………………………………………………………………… 146
9.3 Alloy Concepts …………………………………………………………………… 149
9.4 Processing………………………………………………………………………….. 153
9.5 Properties…………………………………………………………………………… 160
9.6 Conclusion…………………………………………………………………………. 162
References……………………………………………………………………………………. 162

Contents xiii
10 State-of-the-Science of High Manganese TWIP Steels
for Automotive Applications………………………………………………………… 165
B.C. De Cooman, L. Chen, Han S. Kim, Y. Estrin, S.K. Kim,
and H. Voswinckel
10.1 Introduction ……………………………………………………………………….. 166
10.2 Experimental ……………………………………………………………………… 169
10.3 Results ………………………………………………………………………………. 169
10.4 Microstructural Analysis ……………………………………………………… 175
10.5 Discussion …………………………………………………………………………. 177
10.6 Conclusion…………………………………………………………………………. 180
References……………………………………………………………………………………. 182
11 Third Generation of AHSS: Microstructure Design Concepts……….. 185
David K. Matlock and John G. Speer
11.1 Introduction ……………………………………………………………………….. 186
11.2 Analysis of Strengthening in AHSS Steels……………………………… 188
11.3 Predictions of AHSS Microstructures and Properties……………….. 194
11.4 Evaluation of Methodologies to Produce
Third Generation AHSS ………………………………………………………. 199
11.5 Summary …………………………………………………………………………… 202
References……………………………………………………………………………………. 203

Part III Modeling
12 Crystal Plasticity Based Modelling of Deformation Textures…………. 209
P. Van Houtte
12.1 Introduction ……………………………………………………………………….. 209
12.2 Crystal Plasticity Based Models ……………………………………………. 210
12.2.1 General………………………………………………………………….. 210
12.2.2 Full Constraint (FC) Taylor Theory…………………………… 212
12.2.3 LAMEL Model ………………………………………………………. 213
12.2.4 Grain Interaction (GIA) Model …………………………………. 214
12.2.5 Advanced Lamel Model (ALAMEL)…………………………. 215
12.2.6 Crystal Plasticity Finite Element Models (CPFEM) …….. 216
12.3 Model Validation………………………………………………………………… 216
12.4 Discussion and Conclusions …………………………………………………. 222
References……………………………………………………………………………………. 223
13 Simulation of Persistence Characteristics of Textures
During Plastic Deformation …………………………………………………………. 225
László S. Tóth
13.1 Introduction ……………………………………………………………………….. 225

xiv Contents
13.2 Principles of Orientation Stability …………………………………………. 226
13.2.1 Stability Condition ………………………………………………….. 226
13.2.2 Evolution of Orientation Density ………………………………. 227
13.2.3 Role of Rigid Body Rotation…………………………………….. 228
13.3 How to Identify Ideal Orientations? ………………………………………. 232
13.3.1 The Persistence Parameter ……………………………………….. 232
13.3.2 Examples for Persistence Maps ………………………………… 233
13.3.3 The Role of Strain Rate Sensitivity in the Persistence
of Shear Textures ……………………………………………………. 239

13.4 The Role of the Divergence Quantity
in the Formation of Textures ………………………………………………… 240
13.5 Summary and Conclusions …………………………………………………… 244
References……………………………………………………………………………………. 245
14 DXRD and Its Applications Leading to New Modelling…………………. 247
D. Juul Jensen
14.1 Introduction ……………………………………………………………………….. 247
14.2 3DXRD……………………………………………………………………………… 248
14.3 Growth During Recrystallization…………………………………………… 249
14.3.1 Growth Rate Distributions ……………………………………….. 249
14.3.2 Anisotropic Growth…………………………………………………. 251
14.4 Distribution of Nucleation Sites ……………………………………………. 252
14.5 Discussion and Conclusion…………………………………………………… 253
References……………………………………………………………………………………. 254
15 3D Image-Based Viscoplastic Response with Crystal Plasticity ……… 255
Anthony D. Rollett, Sukbin Lee, and Ricardo A. Lebensohn
15.1 Introduction ……………………………………………………………………….. 255
15.2 FFT Method……………………………………………………………………….. 256
15.3 3D Image of Nickel Alloy ……………………………………………………. 257
15.4 Results and Discussion ………………………………………………………… 258
15.5 Summary …………………………………………………………………………… 263
References……………………………………………………………………………………. 263

Part IV Specialized Characterization Techniques
16 Diffraction Techniques in Steel Research: An Overview ……………….. 267
Stefan Melzer and Jaap Moerman
16.1 Introduction ……………………………………………………………………….. 268
16.2 Experimental Details…………………………………………………………… 268
16.2.1 Equipment……………………………………………………………… 268
16.2.2 Techniques…………………………………………………………….. 268

Contents xv
16.3 Characterisation of Advanced High-Strength Steels ………………… 269
16.3.1 Texture Measurement of Ferrite and Austenite Phase ….. 269
16.3.2 Retained Austenite ………………………………………………….. 271
16.3.3 Detection of Complex Microstructures………………………. 273
16.3.4 Welds ……………………………………………………………………. 275
16.4 Characterisation of Nickel Plated Battery Steels……………………… 277
16.5 In situ Real-Time Measurement Techniques…………………………… 280
16.6 Summary …………………………………………………………………………… 283
References……………………………………………………………………………………. 283
17 Non-Contact Non-Destructive Measurement of Texture Using
an Electro-Magnetic Acoustic Transducer (EMAT) Sensor …………… 285
C.L. Davis
17.1 Introduction ……………………………………………………………………….. 286
17.2 Materials and Experimental Method ……………………………………… 289
17.3 Results and Discussion ………………………………………………………… 291
17.4 Conclusions ……………………………………………………………………….. 304
References……………………………………………………………………………………. 305
18 Texture Transition in Steel ST37K, in situ Measurement
at High Temperatures Using High-Energy X-rays………………………… 307
H.-G. Brokmeier, S.B. Yi, and J. Homeyer
18.1 Synchrotron Radiation…………………………………………………………. 308
18.1.1 Hard X-ray Instrumentation ……………………………………… 310
18.1.2 Texture Measurements by High Energy
Synchrotron Radiation …………………………………………….. 311

18.2 High Temperature Measurements by High-Energy
Synchrotron Radiation…………………………………………………………. 313
18.2.1 Sample Description and Experimental Conditions ………. 313
18.2.2 In situ High-Temperature Phase Analysis of ST37K……. 315
18.2.3 In situ High-Temperature Texture Analysis of ST37K…. 317
18.3 Conclusion…………………………………………………………………………. 319
References……………………………………………………………………………………. 320

Part V Texture and Microstructure Development
During Special Processes and Materials
19 Ultra-fine Grain Materials by Severe Plastic Deformation:
Application to Steels……………………………………………………………………. 325
Satyam Suwas, Ayan Bhowmik, and Somjeet Biswas
19.1 Introduction ……………………………………………………………………….. 325
19.2 General Characteristics of Severe Plastic Deformation…………….. 327
19.2.1 Equal Channel Angular Extrusion …………………………….. 329
19.2.2 Accumulative Roll Bonding……………………………………… 332

xvi Contents
19.3 Severe Plastic Deformation Processes as Applied to Steels ………. 333
19.3.1 Equal Channel Angular Extrusion …………………………….. 333
19.3.2 Accumulative Roll Bonding……………………………………… 340
19.4 Summary and Perspective ……………………………………………………. 340
References……………………………………………………………………………………. 341
20 Development of Texture from the HAZ to Weldmetal
Across the Fusion Boundary………………………………………………………… 345
Martin Strangwood and Claire Davis
20.1 Introduction ……………………………………………………………………….. 345
20.2 Experimental ……………………………………………………………………… 346
20.3 Results and Discussion ………………………………………………………… 347
20.3.1 Fe-3 wt% Si Steel……………………………………………………. 347
20.3.2 430 Stainless Steel ………………………………………………….. 348
20.3.3 AA5182 Spot Weld…………………………………………………. 353
20.3.4 AA5251 MIG Weld ………………………………………………… 355
20.4 Conclusions and Further Work……………………………………………… 358
References……………………………………………………………………………………. 358
21 Evolution of Recrystallization Texture in AISI300 Series
Austenitic Stainless Steels After Cold Rolling to Large Strain……….. 361
Sandip Ghosh Chowdhury, P. Sahu, B. Mahato, and P.K. De
21.1 Introduction ……………………………………………………………………….. 361
21.2 Experimental Procedure ………………………………………………………. 362
21.3 Results ………………………………………………………………………………. 363
21.3.1 Deformation Texture……………………………………………….. 363
21.3.2 Microstructure………………………………………………………… 367
21.3.3 Recrystallization …………………………………………………….. 369
21.4 Discussion …………………………………………………………………………. 373
21.5 Conclusions ……………………………………………………………………….. 377
References……………………………………………………………………………………. 378
22 Deformation and Recrystallization Textures in Iron Aluminides …… 379
W. Skrotzki, R. Tamm, K. Kegler, and C.-G. Oertel
22.1 Introduction ……………………………………………………………………….. 379
22.2 Experimental ……………………………………………………………………… 381
22.3 Results and Discussion ………………………………………………………… 382
22.4 Conclusions ……………………………………………………………………….. 389
References……………………………………………………………………………………. 390
23 Effect of Nanocrystallization on the Phase Stability of Al-Cu-Ti
and Al-Cu-Nb Metallic Systems …………………………………………………… 393
S. Bera and I. Manna
23.1 Introduction ……………………………………………………………………….. 393
23.2 Thermodynamic Model ……………………………………………………….. 394

Contents xvii
23.3 Results and Discussion ………………………………………………………… 396
23.4 Conclusion…………………………………………………………………………. 404
References……………………………………………………………………………………. 404

Part VI Contributory Papers
24 Investigation of Microstructure Development
During α-γ-α Phase Transformation in Steel
by Using High Temperature in situ EBSD…………………………………….. 409
I. Lischewski, D.M. Kirch, A. Ziemons, and G. Gottstein
24.1 Introduction ……………………………………………………………………….. 409
24.2 Experimental Results…………………………………………………………… 410
24.3 Discussion …………………………………………………………………………. 412
24.4 Summary …………………………………………………………………………… 413
References……………………………………………………………………………………. 413
25 A New Flow Function to Model Texture Evolution
in Symmetric and Asymmetric Rolling…………………………………………. 415
Benoît Beausir and László S. Tόth
25.1 Introduction ……………………………………………………………………….. 415
25.2 Flow Modelling ………………………………………………………………….. 416
25.3 Velocity Field, Velocity Gradient and Texture Results…………….. 418
25.4 Conclusion…………………………………………………………………………. 420
References……………………………………………………………………………………. 420
26 Microstructure and Texture Evolution During the
Accumulative Roll Bonding of Pure Ni…………………………………………. 421
P.P. Bhattacharjee, D. Terada, and N. Tsuji
26.1 Introduction ……………………………………………………………………….. 421
26.2 Experimental ……………………………………………………………………… 422
26.2.1 ARB Process ………………………………………………………….. 422
26.2.2 Microstructural Investigation……………………………………. 422
26.3 Results and Discussion ………………………………………………………… 423
26.4 Conclusions ……………………………………………………………………….. 429
References……………………………………………………………………………………. 429
27 Microstructure of the Rust Formed on Si-Al
Bearing Ultrafine-Grained Weathering Steel………………………………… 431
V. Raman and T. Nishimura
27.1 Introduction ……………………………………………………………………….. 431
27.2 Experiments……………………………………………………………………….. 432
27.3 Results and Discussions……………………………………………………….. 433
27.4 Conclusions ……………………………………………………………………….. 437
References……………………………………………………………………………………. 437

xviii Contents
28 Microstructure Evolution in Three FCC Materials
During Limited Dome Height Test……………………………………………….. 439
S. Mishra, P. Pant, K. Narasimhan, and I. Samajdar
28.1 Introduction ……………………………………………………………………….. 439
28.2 Experimental Details…………………………………………………………… 440
28.3 Results and Discussions……………………………………………………….. 441
28.4 Conclusions ……………………………………………………………………….. 443
References……………………………………………………………………………………. 443
29 The Facet Method for the Description of Yield Loci
of Textured Materials………………………………………………………………….. 445
Sampath Kumar Yerra, Albert Van Bael, and Paul Van Houtte
29.1 Introduction ……………………………………………………………………….. 446
29.2 The Facet Method……………………………………………………………….. 446
29.3 Results and Discussion ………………………………………………………… 447
References……………………………………………………………………………………. 449
30 The Hall-Petch Relationship in Interstitial-Free Steel Processed
by Equal Channel Angular Extrusion…………………………………………… 451
Azdiar A. Gazder, Christopher H.J. Davies, and Elena V. Pereloma
30.1 Introduction ……………………………………………………………………….. 451
30.2 Experimental Procedure ………………………………………………………. 453
30.3 Results and Discussion ………………………………………………………… 453
30.4 Conclusions ……………………………………………………………………….. 455
References……………………………………………………………………………………. 456
31 Evolution of Crystallographic Texture During Equal Channel
Angular Extrusion (ECAE) of (α+β) Brass …………………………………… 457
Satyaveer Singh D., Ayan Bhowmik, Somjeet Biswas, Satyam Suwas,
and K. Chattopadhyay
31.1 Introduction ……………………………………………………………………….. 457
31.2 Experimental Procedures……………………………………………………… 458
31.3 Results and Discussions……………………………………………………….. 459
31.4 Conclusions ……………………………………………………………………….. 464
References……………………………………………………………………………………. 464
32 Grain Growth in ECAE Processed Pure Magnesium…………………….. 465
Somjeet Biswas, Satyaveer Singh D., and Satyam Suwas
32.1 Introduction ……………………………………………………………………….. 465
32.2 Experimental Methods…………………………………………………………. 466
32.3 Results and Discussions……………………………………………………….. 466
32.3.1 Grain Growth Statistics……………………………………………. 468
32.3.2 Activation Energy …………………………………………………… 468
32.3.3 Texture Analysis …………………………………………………….. 469

Contents xix
32.4 Conclusions ……………………………………………………………………….. 472
References……………………………………………………………………………………. 473
33 Solidification Microstructure and Texture
in Grain-Refined Titanium Alloys………………………………………………… 475
Segolene de Waziers, Shibayan Roy, Satyam Suwas,
S. Tamirisakandala, R. Srinivasan, and D.B. Miracle
33.1 Introduction ……………………………………………………………………….. 475
33.2 Experimental ……………………………………………………………………… 477
33.3 Results and Discussions……………………………………………………….. 477
33.4 Conclusion…………………………………………………………………………. 481
References……………………………………………………………………………………. 482
34 Effect of Intercritical Heat Treatment on the Abrasive
Wear Behaviour of Plain Carbon Dual Phase Steel……………………….. 483
M.K. Manoj, V. Pancholi, and S.K. Nath
34.1 Introduction ……………………………………………………………………….. 483
34.2 Experimental ……………………………………………………………………… 484
34.3 Results and Discussion ………………………………………………………… 485
34.4 Conclusion…………………………………………………………………………. 487
References……………………………………………………………………………………. 488

 

Subscribe
Notify of
guest
0 Comments
Inline Feedbacks
View all comments
0
Would love your thoughts, please comment.x
()
x